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Abstract— New vision sensors, such as the Dynamic and
Active-pixel Vision sensor (DAVIS), incorporate a conventional
camera and an event-based sensor in the same pixel array.
These sensors have great potential for robotics because they
allow us to combine the benefits of conventional cameras
with those of event-based sensors: low latency, high temporal
resolution, and high dynamic range. However, new algorithms
are required to exploit the sensor characteristics and cope
with its unconventional output, which consists of a stream of
asynchronous brightness changes (called “events”) and syn-
chronous grayscale frames. In this paper, we present a low-
latency visual odometry algorithm for the DAVIS sensor using
event-based feature tracks. Features are first detected in the
grayscale frames and then tracked asynchronously using the
stream of events. The features are then fed to an event-based
visual odometry algorithm that tightly interleaves robust pose
optimization and probabilistic mapping. We show that our
method successfully tracks the 6-DOF motion of the sensor
in natural scenes. This is the first work on event-based visual
odometry with the DAVIS sensor using feature tracks.

MULTIMEDIA MATERIAL

A video attachment to this work is available on the
authors’ webpage.

I. INTRODUCTION

Vision systems for robotics are currently dominated by
methods designed for conventional, frame-based cameras,
which acquire entire images of the scene at fixed rates.

Recently, bio-inspired silicon retinas [1], [2] have been
developed to overcome some of the limitations of frame-
based cameras. These sensors constitute a paradigm shift
since they operate asynchronously, transmitting only the
information conveyed by brightness changes in the scene
(“events”), at the time they occur with microsecond res-
olution. Event-driven algorithms have been developed to
provide initial solutions to some robotics problems such as
pose tracking [3], [4], visual odometry [5], Simultaneous
Localization and Mapping (SLAM) [6], [7]. However, some
of these approaches used additional sensors, such as depth
sensors [5], [7], or were developed for high-contrast scenes
[3], [4], [5].

The Dynamic and Active-pixel Vision Sensor (DAVIS) [8]
has been introduced very recently (2014). It is an integrated
sensor comprising a conventional frame-based camera and an
asynchronous event sensor. This novel hybrid sensor calls
for new methods that exploit the combined advantages of
event and frame sensors to yield better solutions for robotics
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Fig. 1: Space-time view in the image plane of the tracked
features’ trajectories used for visual odometry. Features are
tracked using the events produced by the DAVIS during
arbitrary motion in a scene with natural textures. This
example shows a back-and-forth dominant translation with a
short pause in the middle. Events are not displayed to avoid
cluttering. A sample of the events produced by the DAVIS
in visual odometry applications is shown in Fig. 2

problems than those provided by each sensor individually.
Such new methods must address the challenges that this
sensor poses: it has a complicated analog circuitry, with non-
linearities and multiple biases that can change the sensitivity
of the pixels, and other dynamic properties, which unfor-
tunately make the frames and events highly susceptible to
noise.

Contribution: In this paper, we present a low-latency
visual odometry algorithm for the DAVIS sensor using event-
based feature tracks. We make use of both the frames and
the events provided by the sensor. More specifically, we
achieve visual odometry using the geometric information
conveyed by edge-like features that are adapted to the DAVIS
characteristics and represent natural brightness patterns in
the scene. Features are first detected using the frames and
then tracked asynchronously using the events (see Fig. 1).
Next, they are fed to an event-based visual odometry (VO)
algorithm that computes a local probabilistic 3D map of the
scene and tracks the 6 degree-of-freedom (DOF) pose of
the sensor by robust reprojection error minimization. Pose
updates are event-based, thus preserving the asynchronous
and low-latency nature of the event data.

Outline: The remainder of the paper is organized as
follows. Section II describes the sensor used. Section III
reviews related literature on event-based feature tracking and
event-driven motion estimation methods. Our approaches to
feature tracking (2D) and visual odometry (3D) are described



in Sections IV and V, respectively, and they are empirically
evaluated in Section VI. Conclusions are highlighted in
Section VII.

II. THE DYNAMIC AND ACTIVE-PIXEL VISION SENSOR

The first event-based sensor, called the Dynamic Vision
Sensor (DVS) [1], became commercially available in 2008.
The DAVIS [8] is a novel vision sensor combining a
conventional frame-based camera and a DVS in the same
array of pixels. The global-shutter frames provide absolute
illumination on demand, whereas the event sensor responds
asynchronously to pixel-level brightness changes, indepen-
dently for each pixel. If I(t) is the illumination sensed at
pixel (x, y), an event is triggered if the relative brightness
change exceeds a global threshold. More specifically, an
event is a tuple e = (x, y, t, p) that conveys the spatio-
temporal coordinates (x, y, t) and sign (i.e., polarity p = ±1)
of the brightness change. Events are time-stamped with mi-
crosecond resolution and transmitted asynchronously when
they occur and with very low latency (microseconds). The
DAVIS has a very high dynamic range (130 dB) compared
with the 70 dB of high-quality, traditional image sensors. The
low latency, the high temporal resolution, and the very high
dynamic range make the DAVIS extremely advantageous for
future robotic applications.

A visualization of the DAVIS output is shown in Fig. 2.
The spatial resolution of the DAVIS is 240 × 180 pixels.
This is still small compared to the spatial resolution of state-
of-the-art conventional cameras. Newer sensors, such as the
color DAVIS [9] will have higher spatial resolution (640 ×
480 pixels), thus overcoming current limitations.

Optically, the lenses mounted on the DAVIS are the
same as those mounted on conventional cameras. Having
the grayscale and DVS pixels perfectly aligned in the
DAVIS simplifies camera calibration, an essential stage in
robotics applications. State-of-the-art algorithms for conven-
tional cameras can be applied on the frames alone to calibrate
the sensor.

III. RELATED WORK

We first review the related works on event-based feature
tracking and then on event-based motion estimation.

A. Event-based Feature Detection and Tracking

Feature detection and tracking methods for frame-based
cameras are well established. However, they cannot track in
the blind time between consecutive frames, and are expensive
because they process information from all pixels, even in
the absence of motion in the scene. Conversely, event-based
cameras acquire only relevant information for tracking and
respond asynchronously, thus, filling the blind time between
consecutive frames. Event-based cameras are particularly
suitable for applications in motion analysis and high-speed
control [10].

Early event-based feature trackers were very simple
and focused on demonstrating the low-latency and low-
processing requirements of event-driven systems, hence they

Fig. 2: Typical output of the DAVIS in a visual odometry
scenario: as the sensor moves through the scene, it acquires
both frames (at low frame rates) and events (asynchronously
and fast). Thousands of events are triggered in the time
between two frames since, due to the sensor’s motion,
intensity changes occur at all pixels.

tracked moving objects as clustered blob-like sources of
events [11], [10]. The high-speed advantage of event cameras
was also shown in [12] for a pencil-balancing robot. Tracking
of the pencil was performed using a fast event-based Hough
transform. Tracking of large contrast polygonal shapes was
demonstrated in [13], where an event-based Iterative Closest
Point (ICP) algorithm was able to track a black polygonal
microgripper on a white background. The method allows for
planar rigid-body transformations of the target shape and
uses a nearest-neighbor strategy to match incoming events
to the target shape. Tracking of complex shapes has been re-
cently presented in [14] for the ATIS sensor [2]. The method
continuously estimates the geometric transformation between
the model and the events representing the object using a
gradient descent update. It can handle isometries and mild
affine distortions. Tracking the translations of arbitrary user-
defined shapes (“kernels”) has also been presented in [15].
Rotational and scaling distortions of a kernel are partially
addressed by comparing the events against a collection of
rotated and scaled kernels.

All previous methods require a priori knowledge or user
input to determine the objects to track. The method in [16]
does not detect and track user-defined objects but lower-level
primitives, such as corner events defined by the intersection
of two moving edges, which are obtained by fitting planes
in the space-time stream of events.

The method of [17] uses both the events and frames to
detect and track objects. The events are used to track clusters
and generate regions of interest, while the frames serve
for foreground-background separation using Convolutional
Neural Networks (CNN). Since this classification is only
applied to the regions of interest, a speedup factor of 70
is reported. The method requires training data and is only
suitable for tracking few, large objects in the scene. For visual
odometry, we are rather interested in tracking many local
features whose position can be precisely determined.

Recently, we presented a hybrid method for feature de-



tection and tracking for the DAVIS [18]. The method first
detects and extracts features in the frames and then tracks
them using only the events. In the present paper, we im-
prove [18] by (i) taking into account the observation that
nearby pixels typically observe events at roughly the same
time and (ii) introducing a tracking refinement step that
works on a slower timescale to avoid drift. Furthermore, we
improve the tracking speed and add dynamic reinitialization
of new features (e.g., in new areas of the scene or when
features are lost).

B. Event-based Motion Estimation

Event-based cameras have been used for robotics appli-
cations such as ego-motion estimation and visual odometry.
One of the first works in this area is [6], where an event-
based particle filter was used for robot self-localization. The
VO system was limited to planar motion, 2D reference maps
with very high contrast, and known scene depth. In the
experiments, they used an upward-looking DVS mounted
on a ground robot moving at low speed. The method was
extended in [7] to a 3D SLAM system that requires an
RGB-D sensor operating in parallel with the DVS.

In our previous work [5], an RGB-D camera was attached
to the DVS to estimate the relative displacement between the
current event and the previous frame of the camera. However,
the system was developed for planar 3-DOF motions and for
scenes with very high contrast.

In another work, we presented an event-based algorithm
to track the 6-DOF pose of the DVS during high-speed
motions in a known environment [3]. However, the method
was meant for artificial, B&W line-based maps; indeed, the
system estimated the pose through minimizing the point-to-
line reprojection error.

Tracking the 3D orientation of the DVS and simultane-
ously using the event stream to generate high-resolution
panorama images of natural scenes was presented in [19],
[20]. However, the system was restricted to rotational mo-
tions, and, thus, did not account for translation or depth.

None of the previous event-based motion estimation meth-
ods is based on tracking complex, natural features in the
event stream. This is the approach that we develop in this
work, as we show next.

IV. FEATURE DETECTION AND TRACKING
WITH THE DAVIS

The overall system workflow is shown in Fig. 3. The
feature tracking module builds upon our previous work [18],
which exploits the absolute brightness information provided
by the frames to detect and extract features that are tracked
using the event data, as illustrated in Fig. 4. To make this
paper self-contained, we summarize the two main steps,
feature detection and tracking, in the next two subsections
and propose improvements in Section IV-C.

A. Feature Detection using the Frames

Since large contrast edges of moving parts of the scene
trigger events more often than low-textured regions, we focus
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Fig. 3: Visual Odometry system: we track features using
events and frames, and then recover the 3D structure of the
scene and the DAVIS’ pose.

Algorithm 1 High temporal resolution tracking

Feature detection:
- Detect corner points on the frame (Harris detector).
- Run Canny edge detector (returns a binary image, 1 if

edge pixel, 0 otherwise).
- Extract local edge-map patches around corner points, and

convert them into model point sets.
Feature tracking:
- Initialize the data point set and 2D histograms per patch.
for each incoming event do

- Update the corresponding data point set and histograms
for each corresponding data point set do

- Estimate the registration parameters between the
data and the model point sets (weighted ICP).

- Update registration parameters of the model points.
Every M2 events, compare spatial histograms, compute

and apply the best shift to mitigate drift.

on this dominant information to devise suitable features to
track. Moreover, we track only distinctive edge patterns that
do not suffer from the aperture problem. Hence, we use the
absolute brightness frames of the DAVIS to detect both edges
(Canny’s method [21]) and corners (Harris detector [22]).
Around the most salient and best distributed corners in the
frame (Fig. 4a), we use the edge pixels to define patches
that mark the locations of the dominant sources of events
(Fig. 4b). The patches are converted into binary masks that
indicate the presence (1) or absence (0) of an edge. These
patches resemble the customized kernels in [15]. The binary
masks define the target shapes to be tracked as 2D point
sets, called “model point sets” (Fig. 4c). These steps are
summarized in the first part of Algorithm 1.

All patches are square and have the same size (Fig. 4b),
which is an adjustable parameter, but it is straightforward to
extend the method to consider different patch sizes.

Our method does not require frames to be provided at a
constant rate since they are only used to initialize features.
Frames can be acquired on demand to replace lost features.



(a) (b) (c)

Fig. 4: Feature detection and tracking. (a) Frame with centers of detected features (green crosses). (b) (1st zoom) edge map
and square patches defining the features (in purple). (c) (2nd zoom) point sets used for feature tracking: model point set (in
purple) and data point set (in blue).

B. Feature Tracking using the Events

Detected features are tracked using the event stream.
The input to the event-based tracking algorithm consists of
multiple, local model point sets. The tracking strategy is
summarized in the second part of Algorithm 1.

1) Sets of Active Events: For every feature i, we define a
data point set of the same size N i

p as the model point set.
Data point sets consist of subsets of the incoming events: an
event is inserted in the i-th data point set if its coordinates
are inside the i-th patch. A data point set defines the active
set of events that are relevant for the registration of the corre-
sponding feature (Fig. 4c). Data point sets are continuously
updated: every incoming event replaces the oldest one in
the set, and then the registration iteration proceeds. This
strategy is event-based, which means that the registration
parameters of the tracked feature are updated every time an
incoming event is considered relevant for the feature under
consideration. The algorithm is asynchronous by design and
it can process multiple features simultaneously.

2) Registration: Registration is carried out by minimiza-
tion of a weighted distance between the model (feature) and
the data point sets (events), mi and pi, respectively:

argmin
R,t

=
∑

(pi,mi)∈Matches

bi ‖Rpi + t−mi‖2, (1)

where a Euclidean transformation (R, t) is assumed (this
is enough since the features do not significantly deform
in the time between events), and the weights bi take into
account outlier rejection and simultaneous events due to edge
structure (Section IV-C). The algorithm that minimizes (1) is
a variation of the Iterative Closest Point (ICP) algorithm [23].
It yields the tracking update rule and is directly linked
to our choice of feature representation. Each iteration of
the algorithm has three stages: first, candidate matches are
established, then the geometric transformation is estimated,
and, finally, the transformation is applied to the model point
set. The operation proceeds until the error difference between
two consecutive iterations is below a certain threshold.
Matches are established according to the minimum distance
criterion, and those above a certain threshold are discarded;
hence the method can handle outlier events, as those pro-
duced by noise.

Due to the high temporal resolution of the DAVIS, the
transformation between consecutive events (in the same
feature) is close to the identity and, therefore, our method
yields good results even after a single iteration.

C. Tracking Improvements

1) Moving edges produce simultaneous events at neigh-
boring locations: Tracking accuracy is improved by in-
corporating in the registration criterion the fact that our
features are based on edges, which are not isolated points
but form connected structures that normally trigger events
in neighboring locations at roughly the same time. We do
so by using weights bi in (1) proportional to the number of
events, out of the last N i

p/4 of them, that fall in the 3 × 3
pixel neighborhood of the current event.

2) Tracking refinement based on local 2D histograms
of events: We supplement weighted ICP with local 2D
histograms designed to improve long-term tracking. Events
are accumulated into patch-size histograms over longer times
than those used in ICP, which makes them more robust
to noise than the point sets. There are two histograms per
feature: H1 over the first M1 events and a moving histogram
H2 over the last M2 events. For well-tracked and rotation-
compensated features, both histograms look almost identical,
thus effectively filtering out noisy events. Otherwise, feature
drift is detected as a shift of H2 with respect to H1. Every
M2 events, histograms are compared in search for shifts
s = (ox, oy)

> in the range ±3 pixels in each dimension.
The comparison metric is histogram intersection, given by
the sum of the minimum of the two histogram values:

d(H1, H2, s) =
∑
x

min(H1(x), H2(x+ s)), (2)

where x = (x, y)> iterates over the patch domain. The shift
s with the largest intersection is applied to the feature, if
it is larger than a given threshold. Histogram lengths pose a
trade-off: the larger they are, the more event noise is filtered;
however, this decreases the reaction speed of the algorithm
and it can also yield blurred histograms for fast drifting
features. The histogram lengths M1 and M2 are multiples
of the patch size N ; a good choice for M2 is 5N , while
M1 is set larger than M2 to ensure a good initial histogram.
Figure 5 shows a sequence of histograms with M2 = 5N .



The benefit of this technique on tracking and visual odometry
is demonstrated in Section VI-A.

Fig. 5: From left to right: histogram H1 (initial) and three
instances of histogram H2 as new events arrive.

V. VISUAL ODOMETRY

The proposed visual odometry (VO) algorithm in Fig. 3
uses the 2D geometric information provided by the feature
tracks to estimate the 3D structure of the scene and the
location of the DAVIS. These two operations (localization
and mapping) are performed in a tightly interleaved manner.
We use depth-filters [24] to estimate the scene structure
in a Bayesian way, and since we track in the order of
one hundred features, the resulting probabilistic map is a
sparse representation of the scene. The camera motion is
tracked by minimization of a weighted reprojection error
using the Gauss-Newton method, which is very fast since the
motion between two events is almost zero. Both operations
are adapted from the Semi-direct Visual Odometry (SVO)
algorithm [24].

A. 3D Mapping using Depth Filters

During mapping, we estimate the depth of 2D features for
which the corresponding 3D point is not yet known. The
depth estimate of a feature is modeled with a probability
distribution that is updated in a Bayesian framework (see
Fig. 6) [24]. This is known as a depth-filter. When a depth-
filter has converged, that is, when the variance of the distri-
bution becomes small enough, a new 3D point is inserted in
the map at the converged depth and it is immediately used
for pose tracking.

More specifically, depth-filters are initialized with a high
uncertainty and set to the mean depth of the scene. Feature
tracks provide depth measurements that are processed by the
filter. Each measurement d̃ki (k-th observation of the i-th
feature) is obtained by triangulation of the current feature
location and its first detection, using the relative camera pose
Tr,k (see Fig. 6). d̃ki is modeled using a Gaussian + Uniform
mixture [25]: good measurements are normally distributed
around the true depth di, with variance τ2i , while outliers
are uniformly distributed in the known range [dmin

i , dmax
i ],

p(d̃ki |di, ρi) = ρiN (d̃ki |di, τ2i ) + (1− ρi)U(d̃ki |dmin
i , dmax

i ),

where ρi is the inlier probability. Well-tracked features are
those with ρi close to 1. Further details on the filter update
equations can be found in [25], however, note that we use
inverse depth coordinates, as in [24].

Tr,k

tr

tk

d̂i

u′
i

ui

d̃ki

dmin
i

dmax
i

Fig. 6: Depth-filter update for a new measurement d̃ki , at
current time tk, of a feature that was extracted at reference
time tr. Over time the uncertain distribution (cyan) becomes
narrower for an inlier (green). Image courtesy of [24].
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Fig. 7: The Gauss-Newton optimizer finds the new pose Tk

at time tk from 2D-3D feature correspondences ui ↔ pi

and the initial guess Tk−1. Image courtesy of [24].

B. Pose Tracking by Reprojection Error Minimization

Given a sparse map of the scene, we obtain the current
camera pose Tk by minimizing the reprojection error:

Tk = argmin
T

1
2

∑
i

wi‖ui − π(T,pi)‖2, (3)

where ui and pi are the 2D and 3D positions of the
i-th feature, as illustrated in Fig. 7, wi are weights, and
π projects 3D world points into the camera frame. This
is solved iteratively with the Gauss-Newton method. For
robustness against outliers, we use the bell-shaped Tukey
weight function

wi =

{(
1− x2

b2

)2 |x| ≤ |b|,
0 otherwise,

(4)

with x = ‖ui − π(T,pi)‖ and b = 5 (pixels). Additionally
we have found that by multiplying wi by the inlier probabil-
ity ρi and the normalized feature age (the number of events
that fall into the patch), the results are significantly better.
Features that are well-tracked over a long time are given
the highest weight, while features that lose track are usually
removed due to a large reprojection error.

C. Bootstrapping

Pose optimization relies on the availability of a map, and
mapping relies on the availability of pose information. But
neither of them are available at the beginning, hence we need
to provide an initial map and pose estimate. We use two-
view bootstrapping with a minimum mean disparity between



Fig. 8: Sample output of the DAVIS: frame with overlaid
events, colored according to polarity (positive in green,
negative in red), from a 0.5ms interval.

the features. The relative camera pose is calculated from 2D
point correspondences with the five-point algorithm for the
essential matrix [26] and RANSAC [27]. This requires an
initial camera motion with a translational component.

VI. EXPERIMENTS

We evaluated the performance of the event-based VO sys-
tem on several scenes with natural textures, rich in brightness
changes of different magnitudes (e.g., Fig. 8). The resulting
camera trajectory is compared against those acquired by
a motion-capture system and a frame-based VO algorithm
based on the state of the art [24]. No constraints were placed
on the sensor’s motion: the DAVIS was freely moved by hand
through the scene.

A. Feature Tracking

A space-time visualization of the trajectories described by
the tracked features in the image plane is displayed in Fig. 1.
Qualitatively, it shows that the tracked features’ trajectories
have a coherent motion.

We evaluate our event-based feature tracker on two differ-
ent scenes: a checkerboard-like scene (because it offers well-
localized features) and a natural scene (with less localized
features, Fig. 8). The results are reported in Fig. 9 and
Fig. 10, respectively, in terms of tracking error vs. time. The
tracking error is computed against ground truth. Ground truth
was generated using a frame-based Lucas-Kanade tracker
[28] and linearly interpolating the feature motion in the time
interval between frames. Features were detected in the first
frame (t = 0) and then tracked over the entire sequence
using only events. In the checkerboard-like scene (Fig. 9),
the mean tracking error is 1.5 pixels. In the natural scene
(Fig. 8), the tracking accuracy gracefully degrades, yielding
a mean tracking error of 2.5 pixels. This degradation results
from two causes: (i) we do not model many of the non-
linearities of the DAVIS, such as non-white noise and other
dynamic properties; (ii) the detected features are based on
a binary edge-map of the scene (resulted from the Canny
detector), but such binary map is an exact representation
of the underlying grayscale scene only if the contrast is
very large. In natural scenes, edges can have all sort of
different magnitudes, but our features still track the most
dominant ones. We used patches of 19 × 19 pixels, which
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Fig. 9: Feature tracking error of our event-based algorithm
on the checkerboard-like scene. The mean tracking error of
all features is marked in black. The blue bands around the
mean indicate the ±1 standard-deviation confidence interval.
The overall mean error (in black) is 1.5 pixels.
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Fig. 10: Feature tracking error of our event-based algorithm
on the natural scene in Fig. 8. The mean tracking error of
all features is marked in black. The blue bands around the
mean indicate the ±1 standard-deviation confidence interval.
The overall mean error (in black) is 2.5 pixels.
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Fig. 11: Long-term tracking improves by using local spatial
histograms of events. With them, the “feature age” distribu-
tion shifts toward higher values; e.g., the median increases
from 1.0 s to 1.5 s.

were experimentally proven to be best for a broad class of
scenes.

The positive effect of the feature refinement technique
described in Section IV-C is shown in Fig. 11. Feature
refinement increases the duration of the feature tracks (called
“feature age”). This has also a positive effect on the perfor-
mance of the VO algorithm since points that are tracked for
longer times imply higher VO accuracy.

B. Visual Odometry

The VO system tracks a constant number of features
(120) that are chosen to be well distributed in the image
plane by means of a grid/binning strategy. Using fewer than
100 features does not yield good results. New features are
initialized when features are lost or leave the field of view
(FOV) of the DAVIS.

Figs. 12 and 13 show the VO results on two sequences.
The figures show the trajectory produced by our VO al-
gorithm, the ground truth (motion-capture system), and the
trajectory produced by a frame-based solution, as well as
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(b) Position error of the estimated trajectories (event-based and
frame-based) with respect to ground truth. The mean scene depth
is 40 cm.
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(c) Orientation error of the estimated trajectories (event-based and
frame-based) with respect to ground truth.

Fig. 12: VO Experiment 1. Comparison of DAVIS trajectories
estimated by our event-based VO algorithm, a frame-based
solution, and ground truth (motion-capture system).

the corresponding errors in position and orientation (with
respect to ground truth). The position error is given by the
Euclidean distance between camera locations. The orien-
tation error is given by the angle of the relative rotation
between camera reference frames, which is the geodesic
distance in SO(3) [29]. In Experiment 1 (Fig. 12), the average
position errors of our method and the frame-based one are
16 and 6mm, respectively. Since the mean scene depth is
40 cm, this corresponds to relative errors of 4.0% and 1.5%,
respectively. In Experiment 2 (Fig. 13), these errors are 30
and 11mm (7.5% and 2.8% of the mean scene depth),
respectively. Overall, the quality of the estimate produced
by our event-based algorithm is comparable to that of the
frame-based solution, but provides low-latency pose updates
since it preserves the event-based nature of the data. These
results are very promising and represent a first step towards
a fully integrated frame-plus-events feature tracking and VO
solution with this novel sensor in natural scenes and in
6-DOF motions, which are challenging conditions that have
not been addressed in previous work.
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(b) Position error of the estimated trajectories (event-based and
frame-based) with respect to ground truth. The mean scene depth
is 40 cm.
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Fig. 13: VO Experiment 2. Comparison of DAVIS trajectories
estimated by our event-based VO algorithm, a frame-based
solution, and ground truth (motion-capture system).

C. Runtime Analysis

The runtime of event-based algorithms depends on the
event rate, which itself depends on several factors: the
apparent speed of moving objects in the scene, the amount
of texture and edges, the sensor parameters (bias configu-
ration), etc. Roughly speaking, the DAVIS generates 105–
106 events/s for normal motions. For faster motion, it is in
the order of a few millions. We tested the implementation on
a laptop with Intel Core i7-4710MQ CPU @ 2.50GHz with
8GB RAM. The C++ code runs completely single threaded.
Our algorithm is able to process 160 kevents/s on average.
The performance analysis is shown in Fig. 14. Running ICP
on every incoming event is excessive since an event does
not have a large influence. We experimentally found that
running ICP every N/3 events (N being the size of the point
sets) speeds up the VO algorithm by a factor of 6 while its
accuracy is preserved. Running ICP only every N events
increases the error. In spite of this speed-up, a significant
portion of the computational time (58.5%, see Fig. 14) is
spent in an off-the-shelf ICP library [30] that can match



point sets in arbitrary dimensions. By using a customized
implementation, runtime could be improved.
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ICP
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Calculate Weights
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New Event

4.3 %
LK Tracking3.4 %

Pose Optimizer
3.4 %

Feature Extraction
13.4 %

Rest

Fig. 14: Runtime analysis of the VO system in Fig. 3,
calling ICP every N/3 incoming events. “New Event” checks
whether a new event is within a patch and updates the
target point set accordingly. “LK Tracking” is not part of our
algorithm and is only used for comparison. Feature extraction
and pose tracking are very efficient. Percentages within ICP
are relative to the aggregated cost (58.5%).

VII. CONCLUSION

We have developed a low-latency, event-based visual
odometry algorithm adapted to the characteristic of the
DAVIS, a prototype sensor with great potential for robotics,
which combines a conventional camera and an event-based
sensor in the same pixel array. Our method extracts visual
features in the frames and tracks them asynchronously using
the events. Features are designed to be trackable using
only the events and are sufficiently generic to be applicable
to non-structured environments. We used two cooperative
techniques to achieve event-based tracking: a weighted point-
set minimization for short-term tracking and comparison of
spatial histograms of events for long-term tracking. Feature
tracks were used to infer 3D quantities, using probabilis-
tic depth-filters for mapping and robust reprojection error
minimization for pose tracking. We demonstrated successful
tracking and VO performance of a moving DAVIS in 6-DOF
and in scenes with natural textures, which are challenging
conditions that have not been previously addressed in the
literature.
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