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Abstract— We tackle the problem of globally localizing a
camera-equipped micro aerial vehicle flying within urban en-
vironments for which a Google Street View image database
exists. To avoid the caveats of current image-search algorithms
in case of severe viewpoint changes between the query and the
database images, we propose to generate virtual views of the
scene, which exploit the air-ground geometry of the system.
To limit the computational complexity of the algorithm, we
rely on a histogram-voting scheme to select the best putative
image correspondences. The proposed approach is tested on a
2km image dataset captured with a small quadroctopter flying
in the streets of Zurich. The success of our approach shows
that our new air-ground matching algorithm can robustly handle
extreme changes in viewpoint, illumination, perceptual aliasing,
and over-season variations, thus, outperforming conventional
visual place-recognition approaches.

MULTIMEDIA MATERIAL

Please note that this paper is accompanied by a video
demonstration available on our webpage along with the
dataset used in this work: rpg.ifi.uzh.ch

I. INTRODUCTION

In this paper, we deal with the problem of globally
localizing a Micro Aerial Vehicle (MAV) in urban envi-
ronments using exclusively images captured by means of
a single onboard camera and at low altitudes (i.e., 10-20
meters from the ground). The global position of the MAV is
recovered by recognizing visually-similar discrete places in
the map. Namely, the air-level image captured by the MAV is
searched in a database of ground-based geotagged pictures,
notably Google Street View image data1. Because of the large
difference in viewpoint between the air-level and ground-
level images, we call this problem air-ground matching. A
graphical illustration of our scenario is shown in Fig. 1.

The motivation behind this work is to develop autonomous
flying vehicles that could one day operate in urban en-
vironments where GPS signal is shadowed or completely
unavailable. In these situations, such technology is crucial to
correct the drift induced by ego-motion-estimation devices
(e.g., inertial measurement units, or inertial-visual odometry
[1], [2]).
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Fig. 1: Illustration of the problem addressed by this work. The global
position of the MAV is computed by matching the aerial image taken by the
flying vehicle with the closest ground-level geotagged Google Street View
image.

In recent years, numerous research papers have addressed
the development of autonomous Unmanned Ground Ve-
hicles (UGV), leading thus to striking new technologies
like self-driving cars. These can map and react in highly-
uncertain street environments partially using [3]—or com-
pletely neglecting—GPS systems [4]. In the next years, a
similar bust in the development of small-sized Unmanned
Aerial Vehicles (UAV) is expected. Flying robots could
perform a large variety of tasks in everyday life, e.g.,
medication or other goods delivery, inspection and modeling
of industrial and historical buildings, search and rescue
missions, monitoring, etc.

Visual-search techniques used in state-of-the-art place-
recognition systems may perform poorly with air-ground
image matching, since in this case—besides the challenges
present in ground visual search algorithms used in UGV
applications, such as illumination, lens distortions, over-
season variation of the vegetation, and scene changes be-
tween the query and the database images—extreme changes
in viewpoint and scale can be found between the aerial MAV
images and the ground-level images.

To illustrate the challenges of the air-ground image match-
ing scenario, in Fig. 2 we show a few samples of the airborne
images and their associate Google-Street-View images from
the dataset used in this work. As can be observed, due to
the different fields of view of the ground cameras and aerial
vehicles and their different distance to the buildings’ facades,
the aerial image is often a small subsection of the ground-
level image, which mainly consists of highly-repetitive and
self-similar structures (e.g., windows) (c.f. Fig. 3). All
these peculiarities make the air-ground matching problem
extremely difficult to solve for state-of-the-art feature-based



Fig. 2: Comparison between airborne MAV (left) and ground-level Google
Street View images (right). Note the significant changes—in terms of
viewpoint, illumination, over-season variation, lens distortions, and scene
between the query (left) and the database images (right)—that obstruct their
visual recognition.

image-search techniques.
We depart from conventional image-search algorithms by

generating artificial views of the scene in order to overcome
the large viewpoint differences between the Google-Street-
View and MAV images, and, thus, successfully solve their
matching. An efficient virtual-view generation algorithm is
introduced by exploiting the air-ground geometry of our
system, thus leading to a significant improvement of the
correctly-paired airborne images to ground level ones. One
might argue that this leads to a significant computational
complexity. We overcome this issue by selecting only a
finite number of the most similar Google-Street-View im-
ages. Namely, we present a novel algorithm to select these
putative matches based on a computationally-inexpensive and
extremely-fast two-dimensional histogram-voting scheme.
The selected, ground level candidate images are then sub-
jected to a more detailed analysis that is carried out in
parallel on the available cores of the processing unit. The
experiments show that using only 4 cores (candidate images)
very good results are obtained with the proposed algorithm.
Furthermore, to deal with the large number of outliers (about
80%) that the large viewpoint-difference introduces during
the feature-matching process, in the final verification step
of the algorithm, we leverage an alternative solution to the
classical Random Sample Consensus (RANSAC) approach,
which can deal with such a high outlier ratio in a reasonable
time.

Fig. 3: Please note that often the aerial MAV image (displayed in mono-
color) is just a small subsection of the Google Street View image (color
images) and that the airborne images contain highly repetitive and self-
similar structures.

To summarize, this paper advances the state-of-the-art with
the following contributions:

• It solves the problem of air-ground matching between
MAV-based and ground-based images in urban envi-
ronments. Specifically, we propose to generate artificial
views of the scene in order to overcome the large view-
point differences between ground and aerial images,
and, thus, successfully solve their matching.

• We present a new algorithm to rapidly detect
putative corresponding image matches using a
computationally-inexpensive and extremely-fast
histogram-voting scheme. Furthermore, the algorithm
automatically scales to the limitations of the available
and computational power, e.g., number of existing
cores of the processor units.

• The proposed approach is a novel-image search tech-
nique that can robustly pair images with severe dif-
ferences in viewpoint, scale, illumination, perceptual
aliasing, repetitive structures, and changes in the scene
between the query and the database images.

• We provide the first ground-truth labeled dataset that
contains both aerial images—recorded by a drone and
other measured parameters simultaneously—and geo-
tagged ground-level images of urban streets. We hope
that this dataset can serve as a benchmark and motiva-
tion for further research in other robotics labs in this
field.

The remainder of the paper is organized as follows: Sec-
tion II gives a review of the related work; Section III shows
the limitations of the state-of-the-art; Section IV presents the
proposed air-ground matching algorithm in detail; Section
V presents the results in comparison with other approaches
from the literature; finally we conclude in Section VI.



II. RELATED WORK

Several research works have addressed appearance-based
localization throughout image search and matching in urban
environments. Many of them were developed for ground
robot Simultaneous Localization and Mapping (SLAM) sys-
tems to address the loop-closing problem [5]–[8], while
other works focused on position tracking using the Bayesian
fashion—such as in [9], where the authors presented a
method that also uses Google-Street-View data to track the
geospatial position of a camera-equipped car in a city-
like environment. Other algorithms used image-search–based
localization for hand-held mobile devices to detect Point Of
Interest (POI), such as landmark buildings or museums [10]–
[12]. Finally, in the recent years, several works have focused
on image localization with Google-Street-View data [13],
[14]. However, all the works mentioned above aim to localize
street-level images in a database of pictures also captured
at the street level. These assumptions are safe in ground-
based settings, where there are no large changes between the
images in terms of viewpoint. However, as will be discussed
later in Section III and Fig. 4, traditional algorithms tend to
fail in air-ground settings, where the goal is to match airborne
imagery with ground one.

Most works addressing the air-ground-matching problem
have relied on different assumptions than ours, notably the
altitude at which the aerial images are taken. For instance,
in [15], [16] the problem of geo-localizing ground level
images in urban environments with respect to satellite or
high-altitude (several hundred meters) aerial imagery was
studied. In contrast, in this paper we aim specifically at
low-altitude imagery, which means, images captured by safe
MAVs flying at 10-20m from the ground.

As envisaged by the firm Matternet,2 MAVs will soon be
used to transport goods, such as medications, blood samples,
or even pizzas from building to building in large urban
settings. Therefore, improving localization at small altitude
where GPS signal is shadowed or completely unreliable is of
utmost importance. To the best of our knowledge, we are the
first to present an in-depth analysis of air-ground matching
between ground-level images (recorded by a car) and low-
altitude aerial images (recorded by a MAV flying close to
the buildings’ facades at 10-20 meters from the ground).

III. COMPARISON WITH STATE-OF-THE-ART
TECHNIQUES

Here, we briefly describe four state-of-the-art algorithms,
against which we compare and evaluate our approach. These
algorithms can be classified into brute-force or bag-of-words
strategies.

A. Brute-force search algorithms

Brute-force approaches work by comparing each aerial
image to every Google-Street-View image in the database.
These algorithms have better precision but at the expense
of a very-high computational complexity. The first algorithm

2http://matternet.us

that we used for comparison is referred to as brute-force
feature matching. This algorithm is similar to a standard
object-detection method. It compares all the airborne images
from the MAV to all the ground level Google-Street-View
images. A comparison between two images is done through
the following pipeline: (i) SIFT [17] image features are
extracted in both images; (ii) their descriptors are matched;
(iii) outliers are rejected through verification of their geo-
metric consistency via fundamental-matrix estimation (e.g.,
RANSAC 8-point algorithm [18]). RANSAC-like algorithms
work robustly as long as the percentage of outliers in the data
is below 50%. The number of iterations N needed to select
at least one random sample set free of outliers with a given
confidence level p—usually set to be 0.99—can be computed
as:

N = log(1− p)/log(1− (1− γ)s), (1)

where γ specifies the expected outlier ratio. Using the 8-
point implementation (s = 8) and given an outlier ratio larger
than 70%, it becomes evident that the number of iterations
needed to robustly reject outliers becomes unmanageable, in
the order of 100’000 iterations, and grows exponentially.

From our studies, the outlier ratio after applying the
described feature matching steps on the given air-ground
dataset (before RANSAC) is between 80%− 90%, or stated
differently, only 10%− 20% of the found matches (between
images of the same scene) correspond to correct match pairs.
Following the above analysis, in the case of our dataset,
which is illustrated in Fig. 2, we conclude that RANSAC-like
methods fail to robustly reject wrong correspondences. The
confusion matrix depicted in Fig. 4b reports the results of
the brute-force feature matching. This further underlines the
inability of RANSAC to uniquely identify two corresponding
images in our air-ground search scenario. We obtained very
similar results using 4-point RANSAC—which leverages
the planarity constraint between features sets belonging to
building facades.

The second algorithm applied to our air-ground-matching
scenario is the one presented in [19], here referred to as Affine
SIFT and ORSA. In [19], an image-warping algorithm is
described to compute artificially-generated views of a planar
scene able to cope with large viewpoint changes. ORSA
[20] is a variant of RANSAC, which introduces an adap-
tive criterion to avoid the hard thresholds for inlier/outlier
discrimination. The results were improved by adopting this
strategy (shown in Fig. 4c), although the recall rate at
precision 1 was below 15% (c.f. Fig. 8).

B. Bag-of-words search algorithms

The second category of algorithms used for comparison
are the bag-of-words (BoW) based methods [21], devised to
improve the speed of image-search algorithms. This tech-
nique represents an image as a numerical vector quantizing
its salient local features. Their technique entails an off-
line stage that performs hierarchical clustering of the image
descriptor space, obtaining a set of clusters arranged in a tree
structure. The leaves of the tree form the so-called visual



Fig. 4: These plots show the confusion matrices obtained by applying several algorithms described in the literature (b-c, e-f) and the one proposed in the
current paper (d). (a) Ground-truth: the data was manually labeled to establish the exact visual overlap between the aerial MAV images and the ground
Google-Street-View image; (b) Brute-force feature matching; (c) Affine-SIFT and ORSA ; (d) Our proposed air-ground-matching algorithm; (e) Bag of
Words (BoW); (f) FAB-MAP. Notice that our algorithm outperforms all other approaches and in the challenging task of matching ground and aerial images.
For precision and recall curves, compare to Fig. 8

vocabulary and each leaf is referred to as a visual word.
The similarity between two images, described by the BoW
vectors is estimated by counting the common visual words
in the images. Different weighting strategies can be adopted
between the words of the visual vocabulary [6]. The results
of this approach applied to the air-ground dataset are shown
in Fig. 4e. We tested different configuration parameters, but
the results did not improve (c.f. Fig. 8).

Finally, the fourth algorithm used for our comparison is
FABMAP [5]. To cope with perceptual aliasing, in [5] an
algorithm is presented where the co-appearance probability
of certain visual words is modeled in a probabilistic frame-
work. This algorithm was successfully used in traditional
street-level ground-vehicle localization scenarios, but failed
in our air-ground-matching scenario, as displayed in Fig. 4f.

As observed, both BoW and FABMAP approaches fail
to correctly pair air-ground images. The reason is that the
visual patterns of the air and ground images are classified
with different visual words, leading, thus, to a false visual-
word association. Consequently, the air-level images are
erroneously matched to the Google-Street-View database.

To conclude, all these algorithms perform rather unsat-
isfactorily in the air-ground matching scenario, due to the
issues emphasized at the beginning of this paper. This
motivated the development of a novel algorithm presented
in the next section. The confusion matrix of the proposed
algorithm applied to our air-ground matching scenario is

shown in Fig. 4d. This can be compared with the confusion
matrix of the ground truth data (Fig. 4a). As observed, the
proposed algorithm outperforms all previous approaches.

IV. AIR-GROUND MATCHING OF IMAGES

In this section, we describe the proposed algorithm in
details. A pseudo-code description is given in Algorithm 1.
Please note that the algorithm from line 1 to 7 can and should
be computed off-line, previous to an actual flight mission.
In this phase, previously saved Google-Street-View images
I = {I1, I2, . . . , In} are converted into image-feature–based
representations Fi, after applying the virtual-view generation
method described in the next section, and are saved in a
database DT .

A. Virtual-view generation

Point feature detectors and descriptors—such as SIFT
[17], BRISK [22], etc.—usually ensure invariance to rotation
and scale. However, they tend to fail in case of substantial
viewpoint changes (θ > 45◦), as we have shown in the
previous section (c.f. Fig. 4b-c).

Our approach was inspired by a technique initially pre-
sented in [19], where, for a complete affine invariance (6
degrees of freedom), it was proposed to simulate all image
views obtainable by varying the two camera-axis orientation
parameters, namely the latitude and the longitude angles. The
longitude angle (ϕ) and the latitude angles (θ) are defined
in Fig. 5 on the right. The tilt can thus be defined as



Tilt
√
2 2 2

√
2

θ 45◦ 60◦ 69.3◦

TABLE I: Tilting values for which artificial views were made.

Fig. 5: Illustration of the sampling parameters for virtual view generation.
Left: observation hemisphere - perspective view. Right: observation hemi-
sphere - zenith view. The samples are marked with dots.

tilt = 1
cos(θ) . The Affine Scale-Invariant Feature Transform

(abbrev. ASIFT [19]) detector and descriptor is obtained by
sampling various values for the tilt and longitude angle ϕ
to compute virtual views of the scene. Further on, SIFT
features are detected on the original image and as well on the
artificially-generated images. In contrast, in our implemen-
tation, we limit the number of tilts considered by exploiting
the air-ground geometry of our system. To address our air-
ground-matching problem, we sample the tilt values along
the vertical direction of the image instead of the horizontal
one. Furthermore, instead of the arithmetical sampling of
the longitude angle at every tilt level proposed in [19], we
make use of just three virtual simulations, i.e., at 0◦, and
±40◦. We illustrate the proposed parameter-sampling method
in Fig. 5 and display the different tilt values in Table I.
By adopting this efficient sampling method, we managed to
reduce the computational complexity by six times—from 60
to 9 artificial views.

In conclusion, the algorithm described in this section
has two main advantages in comparison with the original
ASIFT implementation [19]. Firstly, we significantly reduce
the number of artificial views needed by exploiting the air-
ground geometry of our system, thus, leading to a significant
improvement in the computational complexity. Secondly, by
introducing less error sources into the matching algorithm,
our solution contributes also to obtaining an increased per-
formance in the global localization process.

B. Putative match selection

In this step, the algorithm selects a fixed number of
putative image matches Ip = {Ip1 , I

p
2 , . . . , I

p
c }, based on

the available hardware. The idea is to select a subset of
the Google-Street-View images from the total number of
all the possible matches and to exclusively process these
selected images in parallel, in order to establish a correct
correspondence with the aerial image. This approach enables
a very fast computation of the algorithm. In case there are no
multiple cores available, the algorithm could be serialized,
but the computational time would increase accordingly. The
subset of the ground images is selected by searching for
the approximate nearest neighbor for all the image features
extracted from the aerial image and its virtual views Fa.
The search is performed by using the FLANN [23] library
that implements multiple randomized KD-tree or K-means

Algorithm 1: Vision based global localization of MAVs
Input: A finite set I = {I1, I2, . . . , In} of ground

geotagged images
Input: An aerial image Ia taken by a drone in

street-like environment
Output: The location of the drone in the discrete map,

respectively the best match Ib
1 DT = database of all the image features of I; ;
2 for i← 1 to n do
3 Vi = generate virtual views (Ii); // details in IV-A ;
4 Fi = extract image features (Vi); ;
5 add Fi to DT ;

6 train DT using FLANN [23]; ;
7 c← number of cores; ;
8 // up to this line the algorithm is computed off-line ;
9 Va = generate virtual views (Ia); ;

10 Fa = extract image features (Va); ;
11 search approximate nearest neighbor feature

matches for Fa in DT : MD = ANN(Fa, DT ) ;
12 select c putative image matches Ip ⊆ I:
Ip = {Ip1 , I

p
2 , . . . , I

p
c } // details section IV-B ;

13 run in parallel for j ← 1 to c do
14 search approximate nearest neighbor feature

matches for Fa in F p
j : Mj = ANN(Fa, F p

j ); ;
15 select inlier points: Nj = kVLD(Mj , Ia, Ipj ); ;

16 Ib ← max(N1, N2, . . . , Nc);;
17 return Ib;

tree forests and auto-tuning of the parameters. According to
the literature, this method performs the search extremely fast
and with a good precision, although, for searching in very-
large data bases (100 millions of images), there are more
efficient algorithms (c.f. [24]). Since we perform the search
in a certain area, we opted for FLANN.

Further on, we apply a similar idea to [25], where in
order to eliminate the outlier features, just a rotation is
estimated between two images. In our approach, we compute
the difference in orientation α between the image features
of the aerial view Fa and the approximate nearest neighbor
found in DT . Next, by using a histogram-voting scheme, we
look for that specific Google-Street-View image that contains
the most image features with the same angular change. To
further improve the speed of the algorithm, the possible
values of α are clustered in bins of 5◦. Accordingly, a two-
dimensional histogram H can be built, in which each bin
contains the number of features that count for α in a certain
Google-Street-View image. Finally, we select those c number
of Google-Street-View images that have the maximal values
in H .

To evaluate the performance of our algorithm, we run
several tests using the same dataset and test parameters,
and only modifying the number of cores used. Fig. 6 shows
the obtained results in terms of precision and recall for 4,
8, 16, and 48 cores. The plot shows that, even by using



Nr. parallel cores 4 8 16 48 96

Recall at precision 1 (%) 41.9 44.7 45.9 46.4 46.4

TABLE II: Recall rate at precision 1 in case of the number of putative
Google Street View images analyzed in parallel on different cores.

Fig. 6: Performance analysis in terms of precision and recall in case of: 4,
8, 16, and 48 threads were used in parallel. Please note that by selecting
just 3% of the total number of possible matches, more then 40% of the true
positive matches were detected by the proposed algorithm.

just 4 cores in parallel, a significant number of true-positive
matches between the MAV and Google-Street-View images
is found without having any erroneous pairing, namely at
precision 1. By using 8 cores in parallel, the performance
increases by almost 3%. Please note that it is also possible
to use two times 4 cores to obtain the same performance. By
further increasing the number of cores (e.g., in the case of a
cloud-robotics scenario) minor improvements in performance
are obtained (c.f. Table II).

It can be concluded that the presented approach to select
putative matches from the Google-Street-View data has a
very good performance and, by just selecting 3% of the total
number of possible matches, can detect more then 40% of
the true positive matches at precision 1.

C. Pairing and acceptance of good matches

Having selected c Google-Street-View images Ip =
{Ip1 , I

p
2 , . . . , I

p
c } as described in the previous chapter, in the

final part of the algorithm we make a more detailed analysis
in parallel to compute the final best match for the MAV
image. Analogous to line 11 in Algorithm 1, we search
for the approximate nearest neighbor of every feature of
the aerial image Fa in each selected ground level image
Ipj . The feature points F p

j contained in Ipj are retrieved
from the Google-Street-View image feature database DT ,
and matched against Fa.

In order to pair the airborne MAV images with the Google-
Street-View data and select the best match between the
putative images, we make a verification step (line 15 in
Algorithm 1). The goal of this step is to select the inliers,
correctly match feature points, and reject the outliers. As
emphasized earlier, the air-ground matching of images is a
very challenging one for several reasons, and thus, the tradi-
tional RANSAC-based approaches tend to fail, or need a very
high number of iterations, as shown in the previous section.

Consequently, in this paper we make use of an alternative
solution to eliminate outlier points and to determine feature
point correspondences, which extends the pure photometric
matching with a graph based one.

In this work, we use the Virtual Line Descriptor (kVLD)
[26]. Between two key-points of the image, a virtual line is
defined and characterized with a SIFT-like descriptor, after
the points pass a geometrical consistency check as in [27].
Consistent image matches are searched in the other image
by computing and comparing the virtual lines. Further on,
the algorithm connects and match a graph consisting of k
connected virtual lines. The image feature points that support
a kVLD graph structure are considered inliers, while the
other ones are marked as outliers. In the next section, we
show the efficiency and precision of this method as well as
the virtual-view generation and putative-match selection.

V. EXPERIMENTS AND RESULTS

A. The experimental dataset

We collected a dataset in downtown Zurich, Switzerland.
A commercially available Parrot AR.Drone 2 flying vehicle
was manually piloted along a 2km trajectory, collecting
images throughout the environment at different flying al-
titudes by keeping the MAV camera always facing the
buildings. Sample images are shown in Fig. 2, left column.
For more insights, kindly check the video file accompanying
this article.3 The full dataset consists of more than 40,500
images. For all the experiments presented in this work, we
sub-sampled the data selecting one image from every 100,
resulting in a total number of 405 MAV test images. All
the available Google-Street-View data covering the test area
were downloaded and saved locally, resulting in 113 discrete
possible locations. Since all the MAV test images should
have a corresponding terrestrial Google-Street-View image,
the total number of possible correspondences is 405 in all
evaluations. We manually labeled the data to establish the
ground-truth, namely the exact visual overlap between the
aerial MAV images and the Google-Street-View data. The
Street View pictures were recorded in summer 2009 while
the MAV dataset was collected in winter 2012; thus, the
former is outdated in comparison to the latter. Furthermore,
the aerial images are also affected by motion blur due to
the fast maneuvers of the MAV. Fig. 7 shows the positions
of the Google-Street-View images (blue-dots) overlaid to an
aerial image of the area. Also, correctly-matched MAV image
locations—for which a correct most similar Google-Street-
View image was found—are shown (green-circle).

B. Evaluation criteria and parameters used for the experi-
ments

The different visual-appearance–based algorithms were
evaluated in terms of recall rate4 and precision rate.5 We also

3http://rpg.ifi.uzh.ch
4Recall rate = Number of detected matches over the total number of

possible correspondences
5Precision rate = Number of true positive detected over the total number

of matches detected (both true and false)



Fig. 7: Bird’s-eye view of the test area. The blue dots mark the locations of
the ground Google Street View images. The green circles represent those
places where the aerial images taken by the urban MAV were successfully
matched with the terrestrial image data.

show the results using a different visualization, namely con-
fusion maps. Fig. 4 depicts the results obtained by applying
the four conventional methods discussed in Section III and
the algorithm proposed in this work (Fig. 2d). The confusion
matrix shows the visual similarity computed between all
the Google-Street-View (vertical axes) images and all the
MAV test images (horizontal axes). To display the confusion
maps, we used intensity maps, colored as heat maps. A dark
blue represents no visual similarity, while a dark red color
is a complete similarity. An ideal image pairing algorithm
would detect a confusion matrix coincident to the ground-
truth matrix (Fig. 4a). A stronger deviation from the ground-
truth map shows less accurate results.

For the Bag-of-Words6 approach in Fig. 4e and Fig. 8,
a hierarchical vocabulary tree was trained with branching
factor of k = 10 and depth levels of L = 5, resulting in kL =
100, 000 leaves (visual words) (using both MAV images
and Google-Street-View images recorded in a neighborhood
similar to our test area). Term frequency-inverse document
frequency tf-idf was used as weighting type and the L1-Norm
as scoring type. In the case of FABMAP7 algorithm, several
parameters were tested to get meaningful results. However,
all checked parameter configurations failed on our dataset.
For the experiments presented in the paper, the FABMAP
Vocabulary 100k Words was used. Moreover, a motion model
was assumed (bias forward 0.9) and the geometric consis-
tency check was turned on. The other parameters were set
according to the recommendations of the authors. For our
proposed air-ground matching algorithm, we used the SIFT
feature detector and descriptor, but our approach can be
adapted easily to use other features as well.

C. Results interpretation

Fig. 8 shows the results in term of precision and recall.
Opposite to object recognition algorithms, where the average

6We used the implementation of [7] publicly available at: http://
webdiis.unizar.es/˜dorian/

7We used the implementation of [5] publicly available at: http://www.
robots.ox.ac.uk/˜mobile/

Fig. 8: Comparison of the results. Please note that at precision 1 the proposed
Air-ground matching algorithm greatly outperforms in terms of recall the
other methods. To visualize all the correctly matched airborne MAV images
with the Google Street View images please consult the video attachment of
the paper.

precision is used to evaluate the results, in robotic applica-
tions the most important evaluation criteria is usually the
recall rate at precision 1. This criteria represents the total
number of true-positive detections without having any false-
positive match.

Considering the recall rate at precision 1, our proposed
air-ground matching algorithm (shown with blue on Fig. 8)
outperforms the second best approach, namely the ASIFT and
ORSA (red) by a factor of 4. This is because, in our approach,
the virtual views are simulated in a more efficient way.
Moreover, to reject the outliers, we use a graph matching
method that extends the pure photometric matching with
a graph based one. These results are even more valuable
since the ASIFT and ORSA algorithm was applied in a
brute-force fashion, which is computationally very expen-
sive. In contrast, in the case of our proposed algorithm, we
applied the extremely fast putative-match selection method.
Namely, the results were obtained by selecting just 7%
from the total number of Google-Street-View images. We
show all the correctly-matched MAV images with Google-
Street-View images in the video file accompanying this
article, which gives a further insight about our air-ground
matching algorithm. As observed, other traditional methods,
such as the Visual Bag-of-Words approach (shown with black
in Fig. 8) and FABMAP (magenta) fail in matching our
MAV images with ground level Google-Street-View data.
Apparently, these algorithms fail because the visual patterns
present in both images are classified in different visual words,
thus, leading to false visual-word associations.

Fig. 9 shows the first false-positive detection of our air-
ground matching algorithm. After a more careful analysis, we
found that this is a special case, where the MAV was facing
the same building from two different sides (i.e., from dif-
ferent streets), having only windows with the same patterns
in the field of view. Repetitive structures represent a barrier
for visual-appearance–based localization algorithms, which
can be solved by taking motion dynamics into account in



Fig. 9: Analysis of the first false-positive detection. Top-left: urban MAV
image; top-right: zoom on the global map, where the image was taken;
bottom-left: detected match; bottom-right: true positive pairing according
to manual labeling. Please note that our algorithm fails for the first time in
a situation where the MAV is facing the same building from two different
sides (streets), having in the filed of view only windows with the same
patterns.

a Bayesian fashion. The limitations of the proposed method
are shown in Fig. 10. Please note that these robot positions
(top row) are difficult to be recognized even for humans.
In the future, we plan to extend this work by incorporating
position tracking and using the global localization algorithm
described in the current work to correct the accumulated
drifting errors. The time constraints of the proposed algo-
rithm are relaxed, since not all the frames taken by the
MAV have to be processed for the global localization of the
MAV. Moreover, our architecture is ideal for a cloud-based
implementation, where the aerial image of the MAV is sent
through the 4G network to server-based search engines.

VI. CONCLUSIONS

To conclude, this paper solves the air-ground matching
problem of low-altitude MAV-based imagery with ground
level Google-Street-View images. Our algorithm outperforms
conventional methods from the literature in challenging set-
tings, where the aerial vehicle flies over urban streets up to
20 meters, often flying close to buildings. Furthermore the
presented algorithm keeps the computational complexity of
the system at an affordable level.
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